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Slow dynamics of equilibrium density fluctuations in suspensions
of colloidal hard spheres near the glass transition

Michio Tokuyama
Statistical Physics Division, Tohwa Institute for Science, Tohwa University, Fukuoka 815-8510, Japan

~Received 22 Jun 2000!

A mean-field theory for the dynamics of equilibrium suspensions of colloidal hard spheres near the glass
transition is presented based on the standpoint recently proposed by the present author. It is shown that
although the relative magnitude of the density fluctuations to the mean equilibrium density is small even near
the glass transition, they are described by a nonlinear stochastic equation which originates from the long-range
hydrodynamic interactions between particles. A nonlinear mean-field equation for the particle mean-square
displacement is then derived. This equation is used to analyze the recent experimental data for equilibrium
colloidal suspensions. Analyses show that no divergence of thea- and b-relaxation times is found in the
experimental data, although the dynamic properties of the colloidal liquid exhibit a drastic slowing down in the
so-called supercooled region.

PACS number~s!: 82.70.Dd, 05.40.2a, 51.10.1y
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A number of experiments on colloidal suspensions h
shown a transition from a liquid phase to a glass phase, s
lar to that in glass-forming liquids@1–3#. With the recent
development of the mode-coupling theory~MCT! @4–6# for
the dynamics of supercooled liquids, much of the recent
perimental studies on colloidal suspensions have been
signed around the predictions of the MCT. The most strik
feature of the MCT is the prediction of two distinct slo
relaxation processes,a and b, with the relaxation times
ta and tb , which diverge asta;uf/fc21u2h and tb

;uf/fc21u2d, wheref is a particle volume fraction and
fc a critical volume fraction. For hard-sphere suspensio
one findsfc'0.516,h'2.46, andd'1.60 @6#. The transi-
tion pointfc does not coincide with the experimental resu
ranging from 0.571 to 0.580@2,3#. This discrepancy may
result from the fact that the MCT deals with only the dire
interactions between particles. In fact, there are two kind
interactions between particles in the suspension of h
spheres. One is the hydrodynamic interactions between
ticles through the Oseen tensor. Another is the direct in
actions between particles. In the nonequilibrium suspens
it has been shown that the long-range hydrodynamic inte
tions play an essential role in the slow dynamics nearfg ,
while the short-range hydrodynamic interactions reduce
effect of the direct interactions drastically@7#. The long-
range hydrodynamic interactions lead to a nonlinear de
ministic diffusion equation with the dynamic anomaly of th
self-diffusion coefficient, where the diffusion coefficient b
comes zero atfg5(4/3)3/(7 ln 328 ln 212)'0.57184 . . . .
This anomaly can enhance even small initial disturbance
space and cause the long-lived, spatial heterogeneities
intermediate times nearfg @8#. As long as the system i
away from a critical point, the density fluctuations are sm
compared to the mean density, even near the glass trans
point and obey a linear stochastic diffusion equation. Ho
ever, the density fluctuations are still important since th
are observable through the scattering function by scatte
experiments. In fact, those heterogeneities do influence
dynamics of the density fluctuations and lead to the lo
PRE 621063-651X/2000/62~5!/5915~4!/$15.00
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known, dynamical properties, such as the von Schweid
law and the Kohlrausch-Williams-Watts formula~or
stretched exponential! @8#. The nonequilibrium effects are
observable as the waiting time effects in experiments
simulations. On the other hand, in the equilibrium susp
sions where most of experiments have been done, the a
spatial heterogeneities would be difficult to observe exp
mentally because their size and magnitude are very sm
compared to those in the nonequilibrium case. In this Ra
Communication, however, we show that only nearfg the
density fluctuations can be described by a nonlinear stoc
tic diffusion equation with the self-diffusion coefficien
which shows the dynamic anomaly. By employing a mea
field approach, we then derive a nonlinear equation for
particle mean-square displacement from that equation
analyze recent experimental data on equilibrium colloi
suspensions.

We consider a three-dimensional colloidal suspens
with the particle volume fractionf54pa0

3neq/3, which con-
sists ofN identical spherical particles with radiusa0 and an
incompressive liquid in a volumeV, whereneq5N/V is the
equilibrium particle number density. In this paper we foc
only on a suspension-hydrodynamic stage@7#, where the
space-time cutoffs (r c ,tc), which are the minimum wave
length and time of the dynamic process of interest, are se
r c@ l and tD@tc@tB . Here l denotes the screening leng
given by l 5(6pa0neq)

21/2, in which the hydrodynamic in-
teractions between particles become important,tB the
Brownian relaxation time of the particle, andtD5a0

2/D0 the
structural-relaxation time which is a time required for a p
ticle to diffuse over a distancea0 , whereD0 is a diffusion
constant of a single particle. In this stage the relevant v
able is the volume fraction fluctuations given bydf(r ,t)
5(4pa0

3/3)dn(r ,t), wheredn(r ,t) is the equilibrium den-
sity fluctuations aroundneq. Hence, we start with the follow-
ing nonlinear stochastic diffusion equation already descri
elsewhere@9,10#:

]

]t
df~r ,t !5“•@DS~df!¹df#1j~r ,t !, ~1!
R5915 ©2000 The American Physical Society
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with the space-time-dependent self-diffusion coefficient

DS~df!5DS
S~f!

~129f/32!~s1df/fg!g

fDS
S/~fSD0!1~s1df/fg!g , ~2!

whereg52 here, ands5f/fg21 is the separation param
eter andDS

S(f) the short-time self-diffusion coefficient~see
Ref. @7# for details!. Here j(r ,t) is the Gaussian, Markov
random force and satisfies

^j~r ,t !&5^j~r ,t !df~r 8,0!&50,
~3!

^j~r ,t !j~r 8,t8!&

522d~ t2t8!~4pa0
3f/3!“•@DS„df~r ,t !…¹d~r2r 8!#,

where the brackets denote the average over an equilib
ensemble.

Equation~1! is a starting equation to study the slow d
namics of the equilibrium density fluctuations near the gl
transition. The most important feature of Eq.~1! is that the
diffusion coefficientDS(df) becomes dynamically anoma
lous at df(r ,t)52sfg as DS(df)}D0@s1df(r ,t)/
fg#2. We note here that this anomaly originates from t
long-range hydrodynamic interactions. Hence, there are
kinds of relaxation regions, slow relaxation regions@glassy
regions withdf(r ,t)>2sfg# and fast relaxation region
@liquid regions withdf(r ,t),2sfg#. Similar to the non-
equilibrium case@8#, the glassy regions are expected
freeze for intermediate times, forming a long-lived, spatia
heterogeneous structure. In fact, Eq.~1! can still be nonlinear
in df as long as the magnitudeudf/fgu is the same order a
usu, although the relative magnitude of the density fluctu
tionsdf to the mean valuef is small. Here we should men
tion that in the derivation of Eq.~1! the direct correlations
were neglected for simplicity, and hence, the present the
is restricted only to the description of the self-diffusion pr
cess.

By solving Eq. ~1! numerically, one can calculat
the self-intermediate scattering function FS(k,t)
5^dnk(t)dn2k(0)&, wherednk(t) is the Fourier transform
of dn(r ,t), andFS(k,0)51. In the following, however, we
simply employ a mean-field approach with the two steps
derive an asymptotic equation forFS(k,t) @10#. The first step
is to split up the variabledfq(t) into two parts, a linear par
in dfq(0) and others; dfq(t)5F(q,t)dfq(0)1I q(t),
whereF(q,t) is the intermediate scattering function given
F(q,t)5^dnq(t)dn2q(0)&/S(q), with the static structure
factor S(q)5^udnq(0)u2&, and I q(t) describes nonlinea
terms indfq(0) and fluctuations. The second step cons
of a Gaussian factorization for the many-point correlations
dnq(0), resulting in products ofS(q). From Eq.~1!, one can
thus obtain, to lowest order inudfq(0)/fu,

]

]t
FS~k,t !52k2@DS

L~f!1$DS
S~f!2DS

L~f!%GS~ t !#FS~k,t !,

~4!

with the memory term
m
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GS~ t !5E
0

a0 /r c
dqq2S~q!F~q/a0 ,t !2Y E

0

a0 /r c
dqq2S~q!,

~5!

where the long-time self-diffusion coefficientDS
L(f) is

given by @7#

DS
L~f!5DS

S~f!
~129f/32!sg

fDS
S/~fgD0!1sg . ~6!

Here the spatial cutoffr c was chosen so as to satis
GS(0)51, since the self-diffusion coefficient should be ide
tical with DS

S for short times.
The memory termGS(t) containsS(q) andF(q,t), both

of which are unknown. In order to calculate it, therefore, w
next employ the following empirical relation forF(q,t) re-
cently proposed by Segre` and Pusey@11,12#:

F~q,t !5exp@2q2Dc~q!M2~ t !/~6DS
S!#, ~7!

where Dc(q,f) denotes the q-dependent, short-time
collective-diffusion coefficient andM2(t) represents the par
ticle mean-square displacement given byM2(t)
52(6/k2)ln FS(k,t). Since the functionsDc(q) andS(q) are
still unknown, inserting Eq.~7! into Eq. ~5!, expanding the
nominator of Eq.~5! in powers ofM2(t), and formally per-
forming the integration overq in Eq. ~5!, one can then re-
write Eq. ~5! approximately asGS(t)'12l(f)M2(t)
1O(M2

2)'exp@2l(f)M2(t)#, where the parameterl~f! de-
scribes a static collective property of the equilibrium syst
and is treated as a smooth control parameter. Use of Eq~4!
then leads to

d

dt
M2~ t !56DS

L~f!16@DS
S~f!2DS

L~f!#

3exp@2l~f!M2~ t !#. ~8!

By solving Eq.~8! formally, we thus obtain

FS~k,t !5exp@2k2M2~ t !6#

5@11~DS
S/DS

L!$exp~6lDS
Lt !21%#2k2/~6l!. ~9!

Similar to the nonequilibrium case@8#, there exist four
characteristic time stages nearfg . The first is the early stage
@E# for t<t051/(6lDs

s). The scattering functionFS(k,t)
obeys a short-time exponential decay given byFS(k,t)
5exp@2k2 Ds

st#. After this stage, long-lived, glassy domain
are formed. This is theb-relaxation stage@b# for t0!t
!ta , whereta is thea-relaxation time. For volume fraction
larger than the crossover volume fractionfb @9#, FS(k,t)
obeys two kinds of power-law decays. In the ea
b-relaxation stage@bE# for t0!t<tb51/(6lDS

L), FS(k,t)
obeys a critical decay

Fs~k,t !'~ t/t011!2a~k,f!, ~10!

where a5k2/(6l). Here tb represents the crossover tim
from the short-time self-diffusion process to the long-tim
self-diffusion process. This power-law decay continues up
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the time scale of ordertb . In the lateb-relaxation stage
@bL# for tb<t<ta , FS(k,t) obeys a power law of the
von Schweidler type

FS~k,t !'~ t/t011!2a~k,f!2A~k,f!~ t/tb!b~k,f!, ~11!

where the exponentb(k,f) is to be determined, andA(k,f)
is a positive constant. This power-law decay continues u
the time scale of orderta . After this stage, the spatial rea
rangement of the glassy domains starts to occur and co
ues up to the time scale of ordertL5a2/DS

L . This is the
so-called a-relaxation stage@a# for ta<t<tL . FS(k,t)
obeys a stretched exponential decay

FS~k,t !'~ t/t011!2a exp@2~ t/ta!b#, ~12!

whereta}usu2h, and the exponentsb andh satisfy the re-
lation b5g/h(,1) @8#. After this stage, the glassy domain
disappear and the long-time self-diffusion process domin
the system. This is the late stage@L# for t>tL . FS(k,t)
obeys a long-time exponential decay given byFS(k,t)
5exp@2k2 DS

Lt#.
Equation~9! is used to analyze the recent experimen

data obtained by van Megenet al. @3#. The parameterl~f! is
thus determined from the fitting. The experimental susp
sion comprises mixtures of polymer particles~98% of total
particle volume! and silica particle~2%! suspended incis-
decalin, while the present theory deals with identical h
spheres. Hence, the experimental volume fractionfexp must
be different from the theoretical volume fractionf for the
ideal hard-sphere suspension. For a given value offexp,
therefore, we use the experimental data forDS

L in Eq. ~9!,
while treatingl as a free parameter and choosingf so that
the theoretical, long-time self-diffusion diffusion coefficie
DS

L(f) given by Eq.~6! coincides with the experimental one
Figure 1 shows the fitting results forFS(k,t) for different
volume fractions. From the fitting, one can thus find the f
lowing interesting relations betweenf, l, andfexp:

fexp59.2931026f/@fg~fg2f!#10.536f10.781f2,
~13a!

FIG. 1. Self-intermediate scattering functionFs(k,t) vs time at
ka051.3 for different volume fractions~left to right! fexp50.466,
0.502, 0.529, 0.538, 0.553, 0.558, 0.566, 0.573, 0.578, and 0.
The open circles indicate the experimental data from Ref.@3# and
the solid line from Eq.~9!.
to

in-

es

l

-

d

-

l50.032f/@fg~fg2f!#257.5f1194.6f2. ~13b!

The volume fractionfexp dependence ofl andDS
L are shown

in Fig. 2 together with the experimental data. As mention
by van Megenet al. @3#, the experimental data atfexp

50.566 is the most concentrated for whichFS(k,t) decays to
zero in the experimental time. For volume fractions high
than 0.566, however, the data fail to decay completely in

FIG. 3. Power laws atfexp50.566 andka051.3, wherela0
2

552. The solid line indicates Eq.~9!, the dotted-dashed line th
critical decay given by Eq.~10! with a50.0054, the dashed line th
von Schweidler decay given by Eq.~11! with b50.972, and the
dotted line the stretched exponential decay given by Eq.~12! with
b'0.95. The open circles indicate the experimental data from R
@3#.

3.
FIG. 2. l and log10 (DS

L) vs fexp. The solid line indicates Eq.~6!
and the dotted line Eq.~13b!. The closed circles show the exper
mental data from Ref.@3#, the closed diamonds from Ref.@12#, the
open circles the theoretical prediction by the fitting, and the op
diamonds the fitting results. The vertical dashed lines arefexp

50.544 and 0.580.



n
lf

fo
ll
in
n

ee
a.

v

re

ial
qui-

the

s

tive

y
the
We

own
het-

x-
t the
of

ase
-
der
tal
e

id-
p-
r-

RAPID COMMUNICATIONS

R5918 PRE 62MICHIO TOKUYAMA
experimental time window although they show some dow
ward curvature at longer times. Although the long-time se
diffusion coefficient cannot be obtained experimentally
such higher volume fractions, one can predict it theoretica
by using Eqs.~13!. The predicted values are also shown
Fig. 2. In order to check the validity of the transformatio
~13a!, we also show the experimental data ofDS

L for smaller
volume fractions in Fig. 2. A good agreement is indeed s
between the theoretical results and the experimental dat

It is interesting to note from Fig. 2 that both functionsl
and DS

L show a crossover aroundfexp50.562 from a small
volume fraction behavior to a large volume fraction beha
ior. In fact, their derivatives,dl/dfexp andd log(DS

L)/dfexp,
change drastically betweenfexp50.544(fb

exp) and fexp

50.580(fg
exp). With increasing volume fractionfexp, we

thus observe a progression from normal colloidal liquid
gion @L# for 0,fexp,fb

exp, to supercooled colloidal liquid

FIG. 4. Characteristic timest i vs fexp at ka051.3. The symbols
indicate the fitting results fortb ~s!, ta ~d!, andtL ~L!. The solid
line indicatestL52p/(k2DS

L) and the dotted linetb51/(6lDS
L).

The vertical dashed lines arefb
exp50.544 andfg

exp50.580.
u

-
-
r
y

n

-

-

region@S# for fb
exp<fexp,fg

exp, and to glass region@G# for
fexp>fg

exp. In Fig. 3 the power laws given by Eqs.~10!–~12!
are plotted atfexp50.566 andka051.3 together with the
experimental data. From the fitting, we findb'0.95 andb
50.972. Here we note that the stretched exponentb and the
von Schweidler exponentb are close to 1 because the spat
heterogeneities are weak compared to those in the none
librium case. In Fig. 4 the volume fractionfexp dependence
of the time scalestb , ta , and tL are also shown. In region
@S#, therefore, those time scales are shown to obey
power laws

tb;~DS
L!2d/2, ta;~DS

L!2h/2, tL;~DS
L!2g/2, ~14!

whered'1.6, h'2.1, andg52(b5g/h'0.95). Thus, we
point out that sincel andDS

L are smooth functions offexp,
the divergence oftb , ta , andtL does not occur at any value
of fexp, while in a f spacetb;usu2d, ta;usu2h, and tL
;usu22 sinceDS

L(f);usu2.
In conclusion, we have shown that as long as the rela

magnitude of the density fluctuationsdf(r ,t) to the mean
valuef is the same order asusu, the density fluctuations obe
the nonlinear stochastic equation, which results from
long-range hydrodynamic interactions between particles.
have then derived the mean-field nonlinear equation~8! for
the particle mean-square displacement. We have thus sh
that although the size and the magnitude of the spatial
erogeneities are small, they are still the origin of thea andb
relaxations. Equation~8! was used to analyze the recent e
perimental data. From analyses, we have concluded tha
long-time self-diffusion coefficient is a smooth function
fexp and no divergence of thea- and b-relaxation times
takes place. Hence, we predict that this would be the c
even in fragile~and not so fragile! glass formers, where sev
eral laws are proposed to fit the experimental data. In or
to check the validity of the present theory, the experimen
measurements in a longer time window for higher volum
fractions is encouraged.
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